Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sheng-Chun Chen, ${ }^{\text {a }}$ * Ming-Yang He, ${ }^{\text {a }}$ Hong-jun Zhu ${ }^{\text {b }}$ and Qun Chen ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Key Laboratory of Fine Petrochemical Technology, Jiangsu Polytechnic University, Changzhou 213016, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail:
shengchunchenjpu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.061$
$w R$ factor $=0.131$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(4-Methoxy-6-methyl-1,3,5-triazin-2-yl)-N-methyl- N^{\prime}-(2,3,4-trifluorophenyl)urea

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}$, intramolecular N $\mathrm{H} \cdots \mathrm{F}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, and $\pi-\pi$ stacking interactions generate a columnar structure along the a axis.

Comment

It is well known that substituted ureas containing a triazine group exhibit remarkable bioactivities such as herbicidal (Baumeister, et al., 1994), plant-growth regulatory (Douglass \& Moon, 1987), antitubercular (Patel, et al., 2003) and antibacterial activity against Staphylococcus aureus and Escherichia coli (Patel, et al., 2003). We report here the crystal structure of the title compound, (I).

(I)

The molecular structure of (I) is shown in Fig. 1 and selected bond lengths and angles are given in Table 1. The dihedral angle between the planes of the 1,3,5-triazine and trifluorophenyl fragments is 10.1 (2) ${ }^{\circ}$. Four intramolecular hydrogen bonds, $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ (Desiraju \& Steiner, 1999), are observed in the molecule (Table 2, Fig. 1). In the crystal structure, the molecules are stacked along the a axis, forming a columnar structure (Fig. 2). In the column, the interplanar distance of 3.35 (9) \AA between benzene rings suggests $\pi-\pi$ stacking interactions; this is shorter than the π-cloud thickness ($3.42 \AA$; Pauling, 1960).

Figure 1
The molecular structure of (I), drawn with 30% probability ellipsoids. Intramolecular hydrogen bonds are indicated by dashed lines.

Figure 2
A packing diagram for (I), with a pronounced column along the a axis realised by $\pi-\pi$ stacking.

Experimental

4-Methoxy- $N, 6$-dimethyl-1,3,5-triazin-2-amine ($1.54 \mathrm{~g}, 10 \mathrm{mmol}$) was added to an anhydrous acetonitrile solution of 2,3,4-trifluorophenyl isocyanate $(1.91 \mathrm{~g}, 10 \mathrm{mmol})$, and the mixture was stirred at 333 K for 3 h under nitrogen. A colourless precipitate was isolated, recrystallized from ethyl acetate-hexane mixture ($3: 1 \mathrm{v} / \mathrm{v}$) and dried in vacuo to give a pure compound in 86.2% yield. Colourless needle-like single crystals (m.p. 425-426 K) suitable for X-ray analysis were obtained by slow evaporation of a methanol solution. Analysis calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}$: $\mathrm{C} 47.71 \%, \mathrm{H} 3.70 \%, \mathrm{~N} 21.40 \%$; found: C47.74, H3.68, N21.45\%.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{2} \\
& M_{r}=327.28 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=4.4215(9) \AA \\
& b=17.836(4) \AA \\
& c=18.337(4) \AA \\
& \beta=91.55(3)^{\circ} \\
& V=1445.6(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.504 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 764 reflections
$\theta=2.0-14.1^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Needle, colourless
$0.20 \times 0.18 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\text {min }}=0.97, T_{\text {max }}=0.98$
7065 measured reflections

2004 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-5 \rightarrow 5$
$k=-21 \rightarrow 22$
$l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.05 P)^{2}\right. \\
&+0.66 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.131$
$S=1.01$
2853 reflections
215 parameters

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

C1-F1	$1.324(3)$	C8-N3	$1.385(3)$
C2-F2	$1.350(3)$	C $9-\mathrm{N} 3$	$1.380(3)$
C3-F3	$1.349(3)$	C9-N4	$1.384(3)$
C6-N1	$1.427(3)$	C10-O2	$1.158(3)$
C7-O1	$1.213(3)$	C10-N4	$1.368(4)$
C7-N1	$1.350(3)$	C10-N5	$1.369(3)$
C7-N2	$1.408(3)$	C11-N2	$1.503(3)$
C8-N2	$1.320(3)$	C13-O2	$1.438(4)$
C8-N5	$1.381(3)$		
O1-C7-N1	$123.5(2)$	C8-N2-C7	$128.1(2)$
O1-C7-N2	$120.0(2)$	C8-N2-C11	$117.5(2)$
N4-C9-C12	$120.0(2)$	C7-N2-C11	$114.4(2)$
C7-N1-C6	$127.4(2)$	C10-O2-C13	$126.1(2)$

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1E $\cdots \mathrm{F} 1$	$0.81(4)$	$2.05(4)$	$2.687(3)$	$135(3)$
N1-H1E $\cdots \mathrm{N} 3$	$0.81(4)$	$2.14(4)$	$2.575(3)$	$114(3)$
C5-H5A \cdots O1	0.93	2.29	$2.872(3)$	120
C11-H11A $\cdots \mathrm{N} 5$	0.96	2.19	$2.688(4)$	111

All H atoms were placed in calculated positions and were refined isotropically, with $U_{\text {iso }}(\mathrm{H})$ values constrained to $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, using a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.82 \AA$.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Baumeister, P., Seifert, G. \& Steiner, H. (1994). Eur. Pat No. 584043.
Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 202-215. Oxford University Press.
Douglass, D. L. \& Moon, M. P. (1987). WO Patent No. 8707114.
Patel, L. M., Chikhalia, K. H. \& Desai, P. S. (2003). Orient. J. Chem. 19, 221224.

Patel, V. \& Desai, V. (2003). Asian J. Chem. 15, 1131-1136.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.
H -atom parameters constrained

